Energy Disaggregation via Discriminative Sparse Coding

Energy disaggregation is the task of taking a whole-home energy signal and separating it into its component appliances. Studies have shown that having devicelevel energy information can cause users to conserve significant amounts of energy, but current electricity meters only report whole-home data. Thus, developing algorithmic methods for disaggregation presents a key technical challenge in the effort to maximize energy conservation. In this paper, we examine a large scale energy disaggregation task, and apply a novel extension of sparse coding to this problem. In particular, we develop a method, based upon structured prediction, for discriminatively training sparse coding algorithms specifically to maximize disaggregation performance. We show that this significantly improves the performance of sparse coding algorithms on the energy task and illustrate how these disaggregation results can provide useful information about energy usage. Authors: J. Zico Kolter, Siddharth Batra, Andrew Y. Ng (2010)
AUTHORED BY
J. Zico Kolter
Siddharth Batra
Andrew Y. Ng

Abstract

Energy disaggregation is the task of taking a whole-home energy signal and separating it into its component appliances. Studies have shown that having devicelevel energy information can cause users to conserve significant amounts of energy, but current electricity meters only report whole-home data. Thus, developing algorithmic methods for disaggregation presents a key technical challenge in the effort to maximize energy conservation. In this paper, we examine a large scale energy disaggregation task, and apply a novel extension of sparse coding to this problem. In particular, we develop a method, based upon structured prediction, for discriminatively training sparse coding algorithms specifically to maximize disaggregation performance. We show that this significantly improves the performance of sparse coding algorithms on the energy task and illustrate how these disaggregation results can provide useful information about energy usage.

Download PDF

No Related Item Available

Leave a Reply

You must be logged in to post a comment