Inverted Autonomous Helicopter Flight Via Reinforcement Learning

Helicopters have highly stochastic, nonlinear, dynamics, and autonomous helicopter flight is widely regarded to be a challenging control problem. As helicopters are highly unstable at low speeds, it is particularly difficult to design controllers for low speed aerobatic maneuvers. In this paper, we describe a successful application of reinforcement learning to designing a controller for sustained inverted flight on an autonomous helicopter. Using data collected from the helicopter in flight, we began by learning a stochastic, nonlinear model of the helicopter’s dynamics. Then, a reinforcement learning algorithm was applied to automatically learn a controller for autonomous inverted hovering. Finally, the resulting controller was successfully tested on our autonomous helicopter platform. Authors: Andrew Y. Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie Schulte (2004)
AUTHORED BY
Andrew Y. Ng
Adam Coates
Mark Diel
Varun Ganapathi
Jamie Schulte

Abstract

Helicopters have highly stochastic, nonlinear, dynamics, and autonomous helicopter flight is widely regarded to be a challenging control problem. As helicopters are highly unstable at low speeds, it is particularly difficult to design controllers for low speed aerobatic maneuvers. In this paper, we describe a successful application of reinforcement learning to designing a controller for sustained inverted flight on an autonomous helicopter. Using data collected from the helicopter in flight, we began by learning a stochastic, nonlinear model of the helicopter’s dynamics. Then, a reinforcement learning algorithm was applied to automatically learn a controller for autonomous inverted hovering. Finally, the resulting controller was successfully tested on our autonomous helicopter platform.

Download PDF

Related Projects

Leave a Reply

You must be logged in to post a comment