Learning first order Markov models for control

First-order Markov models have been successfully applied to many problems, for example in modeling sequential data using Markov chains, and modeling control problems using the Markov decision processes (MDP) formalism. If a first-order Markov model’s parameters are estimated from data, the standard maximum likelihood estimator considers only the first-order (single-step) transitions. But for many problems, the firstorder conditional independence assumptions are not satisfied, and as a result the higher order transition probabilities may be poorly approximated. Motivated by the problem of learning an MDP’s parameters for control, we propose an algorithm for learning a first-order Markov model that explicitly takes into account higher order interactions during training. Our algorithm uses an optimization criterion different from maximum likelihood, and allows us to learn models that capture longer range effects, but without giving up the benefits of using first-order Markov models. Our experimental results also show the new algorithm outperforming conventional maximum likelihood estimation in a number of control problems where the MDP’s parameters are estimated from data. Authors: Pieter Abbeel, Andrew Y. Ng (2005)
AUTHORED BY
Pieter Abbeel
Andrew Y. Ng

Abstract

First-order Markov models have been successfully applied to many problems, for example in modeling sequential data using Markov chains, and modeling control problems using the Markov decision processes (MDP) formalism. If a first-order Markov model’s parameters are estimated from data, the standard maximum likelihood estimator considers only the first-order (single-step) transitions. But for many problems, the firstorder conditional independence assumptions are not satisfied, and as a result the higher order transition probabilities may be poorly approximated. Motivated by the problem of learning an MDP’s parameters for control, we propose an algorithm for learning a first-order Markov model that explicitly takes into account higher order interactions during training. Our algorithm uses an optimization criterion different from maximum likelihood, and allows us to learn models that capture longer range effects, but without giving up the benefits of using first-order Markov models. Our experimental results also show the new algorithm outperforming conventional maximum likelihood estimation in a number of control problems where the MDP’s parameters are estimated from data.

Download PDF

Related Projects

Leave a Reply

You must be logged in to post a comment