Online bounds for Bayesian algorithms

We present a competitive analysis of Bayesian learning algorithms in the online learning setting and show that many simple Bayesian algorithms (such as Gaussian linear regression and Bayesian logistic regression) perform favorably when compared, in retrospect, to the single best model in the model class. The analysis does not assume that the Bayesian algorithms’ modeling assumptions are “correct,” and our bounds hold even if the data is adversarially chosen. For Gaussian linear regression (using logloss), our error bounds are comparable to the best bounds in the online learning literature, and we also provide a lower bound showing that Gaussian linear regression is optimal in a certain worst case sense. We also give bounds for some widely used maximum a posteriori (MAP) estimation algorithms, including regularized logistic regression. Authors: Sham Kakade, Andrew Y. Ng (2005)
AUTHORED BY
Sham Kakade
Andrew Y. Ng

Abstract

We present a competitive analysis of Bayesian learning algorithms in the online learning setting and show that many simple Bayesian algorithms (such as Gaussian linear regression and Bayesian logistic regression) perform favorably when compared, in retrospect, to the single best model in the model class. The analysis does not assume that the Bayesian algorithms’ modeling assumptions are “correct,” and our bounds hold even if the data is adversarially chosen. For Gaussian linear regression (using logloss), our error bounds are comparable to the best bounds in the online learning literature, and we also provide a lower bound showing that Gaussian linear regression is optimal in a certain worst case sense. We also give bounds for some widely used maximum a posteriori (MAP) estimation algorithms, including regularized logistic regression.

Download PDF

No Related Item Available

Leave a Reply

You must be logged in to post a comment